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HIV-1 broadly neutralizing antibodies (bNAbs) targeting the viral envelope have shown
significant promise in both HIV prevention and viral clearance, including pivotal results
against sensitive strains in the recent Antibody Mediated Prevention (AMP) trial. Studies of
bNAb passive transfer in infected patients have demonstrated transient reduction of viral
load at high concentrations that rebounds as bNAb is cleared from circulation. While
neutralization is a crucial component of therapeutic efficacy, numerous studies have
demonstrated that bNAbs can also mediate effector functions, such as antibody-
dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis
(ADCP), and antibody-dependent complement deposition (ADCD). These functions
have been shown to contribute towards protection in several models of HIV acquisition
and in viral clearance during chronic infection, however the role of target epitope in
facilitating these functions, as well as the contribution of individual innate functions in
protection and viral clearance remain areas of active investigation. Despite their potential,
the transient nature of antibody passive transfer limits the widespread use of bNAbs. To
overcome this, we and others have demonstrated vectored antibody delivery capable of
yielding long-lasting expression of bNAbs in vivo. Two clinical trials have shown that
adeno-associated virus (AAV) delivery of bNAbs is safe and capable of sustained bNAb
expression for over 18 months following a single intramuscular administration. Here, we
review key concepts of effector functions mediated by bNAbs against HIV infection and
the potential for vectored immunoprophylaxis as a means of producing bNAbs in patients.
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INTRODUCTION

Despite the success of pre-exposure prophylaxis (PrEP) and
antiretroviral therapy (ART) in reducing HIV incidence in
developed countries, the HIV pandemic remains a major
burden in developing nations (1). Among the novel
interventions that continue to be developed, those employing
broadly neutralizing antibodies are among the most promising as
potential prevention (2), therapeutic (3) or cure modality via
elimination of the latent viral reservoir (4). Broadly neutralizing
antibodies (bNAbs) are defined by their capacity for potent
neutralization of large panels of diverse strains (5–8).
Numerous studies in non-human primates (NHP) and
humanized mice have explored the potential for passive
Frontiers in Immunology | www.frontiersin.org 2
transfer of various bNAbs to prevent HIV acquisition. Testing
of various antibodies has shown that bNAb-mediated prevention
can be highly effective, however, at low concentrations a loss of
protection against challenge is observed (9–11).

In addition to direct neutralization of virus entry, antibodies
are capable of mediating non-neutralizing functions that are
important in the context of HIV prevention and viral clearance,
such as antibody-dependent cellular cytotoxicity (ADCC),
antibody-dependent cellular phagocytosis (ADCP) and
antibody-dependent complement deposition (ADCD), through
engagement of the Fragment crystallizable (Fc) region with
various Fc receptors expressed on the surface of innate cells or
complement proteins in the circulation (Figure 1) (12–16).
Therefore, understanding the parameters that influence bNAb
FIGURE 1 | Fc-mediated effector functions. Antibodies can engaged with phagocytes, such as monocytes macrophages and neutrophyls through FcgRIa and
FcgRIIa to drive antibody-dependent cellular phagocytosis.Nk cells can engaged with antibodies through engagement with FcgRIIIa to drive antibody-dependent
cellular cytotoxicity. Antibodies can also activate the classical complement pathway to derive complement dependent cytotoxicity.
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engagement with these innate cell subsets is critical for
the development of maximally effective protective and
therapeutic strategies.

Recent results from the AMP study, in which patients were
passively transferred with VRC01 to prevent HIV acquisition,
has shown that transmission risk is increased as antibody
concentrations fall (17) (ClinicalTrials.gov: HVTN 703/HPTN
081). To overcome the short-lived nature of passive transfer,
we and others have described recombinant adeno-associated
viruses (rAAVs) as a delivery modality, termed Vectored
ImmunoProphylaxis (VIP), that utilizes a single intramuscular
administration to yield sustained expression of a given antibody
(18). To maximize packaging capacity and minimize any
potential toxicity, all viral sequences are removed with the
exception of two 145 base pair inverted terminal repeats. These
innovations allow for a full-length antibody sequence to be
successfully packaged and efficiently expressed in animal
models (19, 20).

Humanized mice are a valuable model in which to test both
prophylactic and therapeutic interventions for HIV. These mice
are the product of genetic engineering to express human genes or
xenografting of immunocompromised mice with stem human
cells and tissues. Humanized mouse models have shown long-
lasting expression of various HIV-1 bNAbs delivered through
VIP resulting in protection from viral challenge (21, 22). Given
the pre-clinical success of vectored antibody strategies, a clinical
trial testing the safety and efficacy of bNAb delivery using VIP is
currently underway with recent results showing up to microgram
per mL concentrations in circulation which were sustained for at
least 18 months post-administration. In this review, we discuss
the role of Fc-mediated effector functions during antibody-
mediated protection from HIV particularly at low concentrations
and the potential for vectored immunoprophylaxis to harness
effector functions to yield durable protection through sustained
bNAb delivery.
PROTECTION FROM HIV ACQUISITION BY
BROADLY NEUTRALIZING ANTIBODIES

The first-generation of HIV-1 broadly neutralizing antibodies
including b6, 4E10, 2F5, and b12 were described over twenty
years ago and showed limited breadth or potency (23–26). Since
then, several second generation bNAbs such as PGDM1400,
VRC01, and PGT121 have been characterized with far greater
potency and breadth (27). BNAbs target distinct sites of
vulnerability on the viral envelope; these include the CD4-
binding site (CD4bs), the V1V2 loops (V1V2), the V3 loop
(V3), the membrane-proximal external region (MPER), and
more recently the gp120-41 interface or fusion peptide (28–
31). Studies in non-human primates (NHPs) have investigated
bNAb-mediated protection from SHIV acquisition using various
bNAbs targeting each of these sites, including b12 (13), VRC01
(11, 32), 3BNC117 (CD4bs) (9, 33), PGDM1400, CAP256-
VRC26.25 (V1V2) (10), 10-1074 (34) and PGT121 (V3) (9,
35). A recent meta-analysis of passive immunization studies
Frontiers in Immunology | www.frontiersin.org 3
performed by Pegu et al. (32) measured the rates of SHIV
infection after a single administration of a given antibody (32).
Collectively, these studies showed that antibody serum
concentration against the challenge virus was strongly
correlated with protection and that antibody inhibitory
concentration required to reduce viral infectivity by fifty or
eighty percent (IC50 and IC80, respectively) were also strong
predictors of protection. Other work has shown that the
protective concentration of an antibody in vivo is often 50-200
times greater than the in vitro IC50 value calculated in an in vitro
neutralization assay suggesting that the more potent an antibody
is, the lower the concentration required to protect (36).
Collectively, this work shows that antibody concentration and
potency are crucial factors that contribute to protection.
However, antibodies are also capable of mediating non-
neutralizing effector functions that have been shown to
contribute to protection and driving viral clearance (12, 13, 16,
37, 38).
CONTRIBUTION OF FC-MEDIATED
EFFECTOR FUNCTIONS IN HIV
PREVENTION AND VIRAL CLEARANCE

Innate immune cells such as natural killer cells, monocytes,
macrophage and neutrophils express a variety of activating and
inhibitory Fc-gamma receptors (FcgRs) which can engage with
the Fc-region of antibodies to drive Fc-mediated effector
functions (39–41). Four different subclasses of Fc receptors
have been defined, including three activating receptors FcgRI,
FcgRII and FcgRIIIa, as well as the inhibitory receptor FcgRIIb.
These molecules drive antibody-dependent innate functions
including ADCC, ADCP, ADCD. ADCC occurs when NK and
other innate cells form immunological synapses with a target cell
through FcgRIIIa engagement to release perforin and granzyme
B. These cytotoxic granules create pores in the membrane of the
target cell, causing it to lyse and die (42–44). Phagocytosis is
mediated by monocytes, macrophages, and neutrophils, where
immune complex-opsonized cells are engulfed by mononuclear
phagocytes through engagement of FcgRIa and FcgRIIa. Cross-
linking of these FcgRs leads to downstream degradation of these
engulfed target cells (45). Additionally, antibodies can also
engage the complement system to drive ADCD. Antibodies
bound to envelopes expressed by infected cells can form stable
hexameric immune complexes that can recruit complement (45).
Antibody-mediated complement activation occurs through the
classical pathway in which C1q is recruited to antibody-immune
complexes (46). This results in the formation of a membrane
attack complex (MAC) that leads to lysis of the target cell (47).

The role of Fc-mediated effector functions in HIV prevention
in patients has been suggested by the analysis of the partially
successful RV144 vaccine trial in Thailand, in which patients
were administered a heterologous prime-boost vaccine regimen
(48). Analysis of uninfected participants showed that antibodies
capable of driving Fc-mediated effector functions were positively
associated with protection (14). Two antibody-dependent innate
September 2021 | Volume 12 | Article 734304
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functions that were strong correlates of decreased risk were
ADCC and ADCP (49–51). Interestingly non-neutralizing
IgG1 and IgG3 subclass antibodies targeting the V1V2 site
mediated these effector functions, raising the possibility that
there may be an optimal envelope epitopes to target to best drive
these Fc functions. Bradley et al. performed a similar study to
that of the RV144 trial in non-human primates, however they
designed a vaccine cocktail of various gp120s to increase the
diversity of antigen seen by the immune system in the hopes of
eliciting broadly neutralizing antibodies (52). Analysis of the
elicited antibodies also found that ADCC by NK cells was a
major correlate of protection in the monkeys. More recent
studies investigating the correlates of protection in a phase 1B
trial attempting to replicate the RV144 regimen in South Africa
(HVTN 097) found that innate immune pathways were highly
upregulated, including signatures of ADCC and ADCP however
it failed to demonstrate significant protection (53). Collectively,
these findings suggest antibodies capable of driving Fc-mediated
effector functions may hold promise in future interventions
designed to prevent HIV transmission.

In addition to HIV prevention, polyfunctional antibodies
have also been found to be associated with HIV control (54).
Similar to findings described in RV144 subjects, elite controllers,
who maintain low viral loads in the absence of therapy, harbor
higher levels of IgG1 and IgG3 antibodies capable of mediating
ADCC and ADCP. Antibodies isolated from elite controllers,
viremic controllers, infected patients on ART, and infected
patients off ART were compared for polyfunctionality and
breakdown of IgG isotype. Interestingly, antibodies from elite
controllers did not have enhanced polyfunctionality compared to
other groups, but there was a higher prevalence of IgG1 and IgG3
subclasses seen in these patients. These antibodies were also able
to mediate ADCC, ADCP, ADCD, and antibody-dependent
neutrophil phagocytosis (ADNP) at lower serum titers
compared to the other groups (54). Additionally, patients
harboring antibodies that could mediate ADCC were also more
likely to develop antibodies that could drive phagocytosis by both
monocytes and neutrophils. Collectively, this data suggests that
polyfunctional antibodies may have a significant impact on viral
clearance in chronically infected individuals.

Understanding the role effector functions play in both
prevention and control in chronic infection has largely focused
on non-neutralizing antibodies elicited by patients. Although the
vaccine regimen administered in the RV144 trial showed
promising results, when an analogous regimen was given in
South Africa in the HVTN02 trial it failed to achieve statistically
significant protection, demonstrating the need for continued
development of alternative strategies. Additionally, a study by
Dugast et al. (55) demonstrated that passive transfer of ADCC-
inducing non-neutralizing antibodies isolated from elite
controllers failed to protect rhesus monkeys from SHIV
challenge, suggesting that Fc-mediated effector functions alone
are insufficient to protect against viral acquisition (55). In
another study, Burton et al. (56) showed that rhesus macaques
had limited protection against mucosal SHIV challenge when
administered weakly or non-neutralizing antibodies compared to
Frontiers in Immunology | www.frontiersin.org 4
monkeys given a potent bNAb (56). Given these findings, highly
potent neutralizing antibodies appear to afford better protection
than polyfunctional non-neutralizing antibodies in HIV
prevention. However, understanding the capacity for bNAbs to
elicit these Fc-mediated effector functions has been of
considerable interest as a potential way to harness the
polyfunctionality of these antibodies. Additionally, given
the promise shown by bNAbs in prevention, there has also
been a push to investigate how these antibodies may be
employed therapeutically.

A number of groups have independently performed assays
designed to measure the protective and therapeutic efficacy of
bNAbs across a wide-range of animal models (Table 1). Seminal
work in this area by Hessell et al. demonstrated the importance
of Fc-mediated effector functions of bNAbs in SHIV prevention.
Variants of b12, a first-generation CD4bs bNAb, designed to
abrogate Fc-interaction and engagement with FcgRs, were
passively transferred into rhesus macaques to evaluate the
contribution of Fc effector functions against SHIV challenge
(13). Interestingly, NHPs that were given b12-LALA, an Fc
variant in which mutations were engineered into the Fc region
to diminish engagement with FcgRs and abrogate ADCD,
ADCC, ADCP, and ADNP, were more susceptible to infection
compared to macaques that were administered wildtype
antibody. However, recent work by Hangartner et al. (60)
performing a similar study with PGT121 found differing
results (60). Demonstrating no difference in protection among
NHPs given PGT121-WT and PGT121-LALA or PGT121-
LALAPG, a variant that further reduces engagement with
rhesus FcgRI and rhesus FcgRIIa, thereby reducing Fc-
mediated function. Another recent study found similar results
also comparing PGT121 and PGT121-LALA to measure
protection afforded by Fc effector function in pigtail marques,
finding that the neutralization potency of this bNAb renders Fc
effector functions partially redundant (61). It may be more
difficult to ascertain the role Fc-mediated effector functions
play in protection with a highly potent bNAb, such as
PGT121, compared to bNAbs that may be less potent, such as
b12 where there may be a more clear distinction in the
contribution of effector function (61). Given the results of
these studies, it is possible that the protective efficacy of some
bNAbs do not benefit from Fc-effector functions. As such,
additional work will be needed to fully define the protective
properties of Fc-mediated functions.

In addition to prevention, Fc-mediated effector functions of
bNAbs have also been investigated in the context of driving viral
clearance of established HIV infection. Recently, Asokan et al.
measured the contribution of bNAb-mediated effector function
in chronically infected rhesus macaques. SHIV-infected monkeys
were treated with a CD4bs-directed bNAb, VRC07-LS, or
variants harboring Fc mutations that either enhanced or
diminished engagement with FcgRs. Using this panel of
mutant antibodies, they determined that innate effector
functions, such as ADCC, ADCP and complement fixation
contributed approximately 21% of the observed rate of viral
clearance (16). Interestingly, this study did find that VRC07-LS
September 2021 | Volume 12 | Article 734304
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TABLE 1 | Protective and therapeutic efficacy of bNAbs in vivo.

otype Effector
function

Outcome

G1 N.A. Protection at 5 and 1mg/kg and
3/5 protected at 0.2mg/kg,
suggesting that protective serum
concentrations for PGT121 is
<10µg/ml

G1 N.A. Neutralizing titers were predictive
of protection against both
viruses; the higher the antibody
conentration the more likely a
monkey was to be protected

G1 N.A. Protection with 2D5 (2/4) despite
high concentration, VRC01
against SHIV-SF162P3 afforded
complete protection, BalP4
challenges: all monkeys at high
and medium doses of VRC01
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Reference Model
System

bNAb Human
or

Monkey
Ab

Dose
given

(mg/kg)

Passive
Transfer
or AAV

Route Challenge
Virus

Virus
Route

Dose In vitro IC50 Projected
Conc at
time of

challenge

I

Moldt et al.
(35)

rhesus
macaques

PGT121 Human 5 P.T. I.V. SHIV-
SF162P3

intravaginal
challenge

300
TCID50

0.005µg/ml High:
95µg/ml

Ig

1 Medium:
15µg/ml

0.2 Low:1/
8µg/ml

Shingai
et al. (57)

rhesus
macaques

VRC01 Human Against
AD8EO:

P.T. I.V. SHIV-
DH12-
V3AD8

rectal
challenge

AD8EO: AD8EO: Ig

NIH45-46 VRC01:
50, 20

VRC01:
188-
711µg/ml

45-
46G54W

PGT121
and 10-
10-74: 20,
5, 1, 0.2

V3:0.09-0.15µg/
ml,

PGT121:
1.8-267µg/
ml

45-46m2 CD4bs: 0.14µg/
ml-6.36µg/ml

10-1074:
19-289µg/
ml'
3BNC117:
215-
105µg/ml

3BNC117 3BNC117:
5, 1

45-46m2:
2-15µg/ml

12A12 45-46m2:
20, 5

DH12-V3AD8 V3: DH12-
V3AD8:

1NC9 Against
DH12-
V3AD8:

SHIV-
AD8EO

VRC01:
306-
395µg/ml

8ANC195 VRC01: 30 V3: 0.01-0.16µg/
ml

PGT121:
1-282µg/
ml

10-1074 PGT121,
10-1074
and
3BNC117:
20, 1, 0.2,
0.05

10-1074:
19-290µg/
ml
3BNC117:
3-294µg/
ml

PGT121 CD4bs: 0.39-
86.27µg/ml

45-46m2:
2-4µg/mlPGT126 45-46m2:

5
Pegu et al.
(32)

rhesus
macaques

2D5 Human 2D5:40 P.T. I.V. SHIV-
SF162P3

rectal
challenge

300
TCID50

2D5:
352µg/ml

Ig

VRC01 VRC01
high 60µg/
ml,
medium
s
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TABLE 1 | Continued

otype Effector
function

Outcome

were protected, at low dose (4/
10), 10E8 protected all monkeys
at high and medium doses, at
low dose (3/6), PG9 protected (4/
6) at high dose, (3/6) at medium
and no moneys at low dose

G1 N.A. CAP256.VRC26 protection at
high dose (3/3), medium (3/3),
low (3/3), PGMD1400 protection
at high dose (4/5), medium (5/5/),
low (1/3)

G1 N.A. Mice given b12 were completely
protected, mice given 2G12, 2F5
and 4E10 were partially
protected. Mice expressing
varying doses of VRC01 showed
partial protection: Mice
expressing less than 10µg/ml
succumbed to infection but mice
expressing >10µg/ml were
protected

G1 N.A. bNAbs can maintain long lasting
expression using VIP, can also
reach high concentrations that
are protective against repeated
mucosal challenge

G1 N.A. No difference in protection
between either route of
challenge, suggesting that there
is similar effiacy of bNAb
proteection against both primary
transmission routes
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Reference Model
System

bNAb Human
or

Monkey
Ab

Dose
given

(mg/kg)

Passive
Transfer
or AAV

Route Challenge
Virus

Virus
Route

Dose In vitro IC50 Projected
Conc at
time of

challenge

Is

22µg/ml,
low
1.31µg/ml

1E9 VRC01,
10E8,
PG9: 20,
5, 0.3

BALP4 10E8 high
133µg/ml,
medium
31µg/ml,
low 1.8µg/
ml

PG9 PG9 high
32µg/ml,
medium
3.7µg/ml,
low
0.28µg/ml

Julg et al.
(10)

rhesus
macaques

PGDM1400 Human 2 P.T. I.V. SHIV-325c rectal
challenge

500
TCID50

PGDM1400=0.037 ~0.1-10µg/
ml

Ig
CAP256-
VRC26.25-
LS

0.4 CAP256-
VRC26.25=0.0030.08

Balazs
et al. (18)

Hu-PBMC
mice

2G12 Human N.A. AAV I.V. NL4-3 I.P. and I.V. 1ng p24 b12:
100µg/ml

Ig

b12 2G12:
150µg/ml

2F5 2F5: 20µg/
ml

4E10 10ng
p24

4E10:
20µg/ml

VRC01 VRC01:
0.1-200µg/
ml

Balazs
et al. (21)

BLT
humanized
mice

b12 Human N.A. AAV I.V. REJO.c intravaginal
challenge

16ng
p24
REJO.c

b12: ~100-
300µg/ml

Ig

VRC01 JR-CSF 50ng
p24 JR-
CSF

VRC01:
~100-
300µg/ml

VRC07W VRC07W:
~100µg/ml

Moldt et al.
(58)

rhesus
macaques

PGT126 Human 10 P.T. I.V. SHIV-
SF162P3

intravaginal
and rectal

unknown 0.3µg/ml 10mg/kg:
100-
125µg/ml

Ig

0.4 2mg/
kg:25µg/ml
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TABLE 1 | Continued

otype Effector
function

Outcome

G1 N.A. VRC07-523-LS afforded better
protection compared to VRC01-
LS, suggesting that a more
potent antibody can protect at
these lower concentrations

G1 N.A. Introducing an LS mutation into
the antibody led to elevated
antibody levels for a longer
period of time and protected
against mucosal challenge for up
to two months after last antibody
administration

G1 FcRn and
FcgRIIIa
binding,
ADCC

VRC01-LS affords better
protection against viral challenge
than VRC01, due to its enhanced
binding with FcRn. No detectable
difference in the ability to bind
FcRIIIa, suggesting that ADCC is
intact

G1 b12-WT
can
mediate
effector
functions,
LALA
variant
cannot
mediate
any
function

Two-fold difference in hazard
ratio between WT and LALA
variant number of challenges to
infection, effector function
appears to play a role in this
difference in protection

G1 C1q and
FcgR
binding

No difference in protection
between b12-WT and b12-KA (8/
9 protected), but monkeys given
b12-LALA were less protected
(5/9)

IgG2a
d
IgG1
65A

FcgR
binding as
a
surrogate
for Fc
effector
function

mIgG1 and mIgG1 D265A (Fc-
null) variants of bNAbs had higher
rates of infection compared to
mIgG2a (intact Fc function)
variants of all bNAbs, suggesting
that Fc-mediated effector
functions play a role in protection

(Continued)
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Reference Model
System

bNAb Human
or

Monkey
Ab

Dose
given

(mg/kg)

Passive
Transfer
or AAV

Route Challenge
Virus

Virus
Route

Dose In vitro IC50 Projected
Conc at
time of

challenge

Is

0.4mg/kg:
4µg/ml

Rudicell
et al. (59)

rhesus
macaques

VRC01-LS Human 0.3 P.T. I.V. SHIV-BalP4 rectal
challenge

12,800
TCID50

VRC01-LS:
0.028µg/ml

VRC01-LS:
2.5µg/ml

Ig

VRC07-
523-LS

0.2 VRC07-523-LS:
0.005µg/ml

VRC07-
523-LS:
0.47µg/ml

0.05

Saunders
et al. (11)

rhesus
macaques

VRC01 Simian 5 P.T. I.V. SHIV-BalP4 rectal
challenge

unknown 0.019µg/ml VRC01:
0.1-1µg/ml

Ig

VRC01-LS VRC01-LS:
2-6µg/ml

Ko et al.
(59)

rhesus
macaques

VRC01,
VRC01-LS

Human 0.3 P.T. I.V. SHIV-BalP4 rectal
challenge

unknown unknown ~20-
100µg/ml

Ig

VRC01-LS

Hessell
et al. (13)

rhesus
macaques

b12-WT Human 1 P.T. I.V. SHIV-
SF162P3

intravaginal
challenge

TCID50
10

0.18µg/ml b12: ~45-
70µg/ml

Ig

b12-LALA b12-LALA:
~5-55µg/
ml,

Hessell
et al. (38)
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P.T. S.C. HIV-YU-2 I

3BNC117-
GRLR

20µg/ml
(low dose)

3BNC117-
GASDALIE

Julg et al.
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with Fc mutations to enhance FcgR binding led to NK cell death
one hour after bnAb infusion, likely due to FcgRIIIa cross-
linking on the cell surface and driving necroptosis, in turn
leading to reduced ADCC. It is possible that over-optimization
of an antibody may have detrimental effects early on in delivery,
and this should be taken into consideration if these antibodies
are to be used therapeutically.

Humanized mice have also been an effective model in which
to study the role of antibody effector functions (12, 37, 62).
Similar to NHP studies, several groups have investigated the
protective effects of various bNAbs and their ability to drive
effector functions in the context of both HIV prevention and
viral clearance during infection. In one study, humanized NOD
Rag1-/-Il2gnull (NRG) mice given the CD4-binding site targeting
bNAb 3BNC117 and challenged with HIV were found to have
enhanced viral clearance 24 hours-post challenge compared to
the control mice given a non-specific antibody (37). 3BNC117
has also been used to measure the role of innate immunity in
ART treated humanized NRG mice (62). Mutations were
introduced into the Fc-region of the antibody to abrogate
binding to both murine and human FcgRs. HIV-infected mice
taken off ART and given Fc-null (3BNC117-GRLR) antibody
exhibited slower viral clearance as compared to mice given the
wild-type antibody and similar clearance to control mice given a
non-specific antibody. These studies implicate innate cells
through Fc engagment in viral clearance in humanized mice.
Other work has also aimed to measure the contribution of Fc-
mediated viral clearance during early infection (12). In this
study, a bi-specific bNAb composed of 3BNC117 and
PGDM1400 was administered to infected mice. Another group
of infected mice were given the same bNAb harboring mutations
in the Fc-region to prevent FcgR engagement and downstream
effector functions. Results showed that innate effector functions
contributed 25-31% of the antiviral activity seen in humanized
mice while 75% was due to antibody neutralization.

Considerable effort has been made to determine whether
there are optimal epitopes on the viral envelope that may
facilitate these activities. BNAbs targeting each of the major
epitopes have been assessed for their ability to mediate innate
functions, including ADCC, ADCP, and antibody-dependent
complement mediated cell lysis (ADCML) against diverse
viruses that span various clades (63, 64). Interestingly, while
neutralization potency does not appear to predict effector
function, there is a weak correlation between antibody binding
and effector function (63, 64). Other groups have confirmed
these findings, showing that neither neutralization potency nor
breadth are strong predictors of effector activity (64–68). Instead
they have shown that binding avidity is better correlated with
function (64–68). As of yet, there is no clear consensus of which
target epitope for bNAbs best mediates Fc-driven functions.
Instead, it has been suggested that modes of binding by non-
neutralizing antibodies can have a dramatic effect on the
resulting potency of the downstream effector function such as
ADCC (67). Two monoclonal antibodies targeting the C1 and C4
gp120 regions with similar antigen affinities exhibit markedly
different responses in driving ADCC (67). Interestingly, when
Frontiers in Immunology | www.frontiersin.org 9
crystal structures were determined for each of the antibodies with
the corresponding antigen, they showed that antibody
orientation on the bound antigen may have enhanced
formation of an immune complex, resulting in increased
potency of downstream innate immunity (67). The angle of
approach for a given bNAb likely affects how these immune
complexes can form and engage with FcgRs (67). Additionally,
numerous structural studies have elucidated FcgR-Fc
interactions to determine the precise mechanism of antibody
binding to FcgRs (40, 69–72). Antibody-antigen structures have
also provided insight on Fc presentation and angle of antibody
binding to an antigen may influence optimal FcgR engagement to
lead to downstream effector function, such as ADCC (73). There
is still much work to be done to understand how modes of
antibody engagement can drive effector functions across diverse
viral strains and how antibodies function post antigen-binding.

Other avenues of investigation have looked to optimize
bNAbs to elicit more potent Fc effector function. One potential
approach has been the use of bNAbs expressed as different
isotypes that have enhanced effector function, such as IgG3.
Recent work by Richardson et al. (74) compared IgG1 and IgG3
variants of V2-specific bNAbs CAP256-VRC26.25 and CAP256-
VRC29 to measure how isotype contributed to potent Fc effector
functions (74). The group was able to isolate these two bNAbs
from an HIV-infected individual that had mounted a potent V2-
specific response and elicited high levels of IgG3 antibodies that
significantly contributed to the total effector function activity
measured in the serum (74). These two bNAbs, CAP256-
VRC26.25 and CAP256-VRC29, were constructed as IgG3
variants using different IGHG3 alleles to measure Fc function
and neutralization. They also expressed these bNAbs as IgG1
isotypes and found reduced neutralization and Fc function
compared to the IgG3 variants but no difference in antigen
binding. They found IgG3 potency was likely due to its longer
hinge length than that of IgG1. Therapeutically, however,
employing IgG3 in patients may pose a challenge as the affinity
for the neonatal receptor FcRn is drastically reduced compared
to IgG1, leading to a far shorter half-life (75). However, recent
work demonstrated that alteration of the hinge length of IgG1
and IgG3 bNAbs VRC01 and 447-52D contributed to Fc
mediated effector functions (76). To make the IgG1 variants,
exons derived from IgG3, including exon a which encodes the
upper and core hinge regions, and exons b-d that encode the core
hinge repeat sequence were sequentially added, resulting in hinge
variants up to 5 times longer than wild-type IgG1. They repeated
the same hinge alteration for IgG3, and included the IgG1 hinge
length as an additional variant. When measuring phagocytosis by
all these variants, they found that a longer hinge length
significantly enhanced the Fc effector function, suggesting that
the length can lead to a more potent response. In addition, in vivo
stability of hinge variants of IgG1 were measured and the rate of
plasma decay in mice was similar to that of the wild-type,
suggesting that such alterations may be viable approaches to
harness Fc mediated effector function by bNAbs.

In addition to understanding how hinge length, isotype and
subclass contribute to optimal Fc effector function, considerable
September 2021 | Volume 12 | Article 734304
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effort has identified point mutations in the Fc region capable of
enhancing FcgR engagement and downstream function (77). In
2001, Shields et al. mapped the binding site of IgG1 for FcgRs,
including FcgRII, FcgRIIIa and FcRn by mutagenesis of an IgG1
antibody. From these variants, specific point mutations in the Fc
region of the antibody emerged that could enhance or diminish
binding to the FcgRs described above (78). One modification,
S298A/E333A/K334A, showed enhanced binding to FcgRIIIa but
decreased binding to FcgRIIa, resulting in improved ADCC
response. Further work has elucidated alternative Fc
modifications that have led to enhanced FcgRIIIa binding and
ADCC, including S239D/I332E, S329D/A330L/I332E, G236A/
S239D/I332E and F243L/R292P/Y300L/V305I/P396L (79–81).
Other Fc modifications have led to increased FcgRIIa binding
and ADCP, including G236A, G236A/A330I/I332E, and G236A/
S239D/A330L/I332E (80, 82). Some mutations have led to both
enhanced ADCC and ADCP, including S239D/I332E, S239D/
A330L/I332E and G236A/S239D/I332E. In addition to
introduction of Fc point mutations, afucosylation of IgG1
antibodies led to dramatically increased ADCC (83). Minimal
alterations to antibodies can maximize downstream Fc
functionality, and these modifications can be used
therapeutically to improve bNAb-mediated protection.

Given the potential for bNAb-mediated protection in HIV
prevention and viral clearance, the question of implementation
has come to the forefront. The AMP clinical trials utilized passive
transfer of VRC01, a CD4bs bNAb, to measure HIV prevention
in different populations, including HIV-uninfected men who
have sex with men (MSM), transgender men who have sex with
men, and sexually active women in sub-Saharan Africa (17, 84–
86) ClinicalTrials.gov: NCT02716675 (17, 84–86). The results
from these trials have been promising, with excellent safety and
tolerability to bNAb administration and reduced transmission of
sensitive strains. However, one drawback to passive
immunization is the need for constant re-administration in
order to maintain steady-state bNAb concentrations. This
requirement poses significant challenges to feasibly scale and
implement as a widespread prophylaxis. In order to overcome
this challenge, other methods of delivery can be employed, such
as vector-mediated delivery. Adeno Associated Virus (AAV)
based gene replacement therapies have been used to treat a
variety of diseases, and recent advances in AAV technology have
demonstrated sustained bNAb expression in humans in an
ongoing clinical trial.
UTILIZING AAV-DELIVERY OF BROADLY
NEUTRALIZING ANTIBODIES

AAVs are non-enveloped viruses that belong to the Parvoviridae
family (85, 86). AAVs are unable to replicate on their own, and as
such require a helper virus, such as an adenovirus or herpesvirus
to productively replicate within cells (87–90). They are
composed of an icosahedral protein capsid surrounding a
single stranded DNA genome of approximately 4700 base
pairs. The natural AAV genome consists of a rep and cap gene
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flanked by two inverted terminal repeats (ITRs) (91). The rep
gene encodes proteins necessary for virion assembly, including
Rep78, Rep68, Rep52 and Rep40. The cap gene encodes for three
capsid proteins, VP1, VP2 and VP3 and the assembly activating
protein (AAP) and membrane-associated accessory protein
(MAAP) in alternative reading frames (87, 92–97). AAV
virions are comprised of 60 VP subunits, and each subunit has
nine variable regions that dictate tropism and intracellular
trafficking (91). Currently, there are more than 100 AAV
serotypes identified that all differ in primary receptor usage
and tissue tropism (98). During infection, AAVs bind to
receptors on target cells which trigger endocytosis into
endosomes from which they escape and traffic to the nucleus.
Here, the inverted terminal repeats (ITRs) present on either end
of the genome self-prime second strand synthesis, which is the
rate-limiting step prior to gene expression (99–102). The ITRs
are the only requirement for packaging DNA into the capsid
(103) As a consequence, recombinant AAV vectors have
approximately 96% of their genome removed, including all
viral coding sequences. This allows for greater packaging
capacity and lowers the potential for viral toxicity (91). In
place of these coding sequences, a transgene of interest, up to
approximately 4,500 base pairs, can be introduced between the
ITRs (104). Following transduction, these recombinant viral
genomes form head-to-tail concatemers within the nucleus,
where they persist as non-integrated episomal genomes
(105, 106).

To date, AAV gene therapies have been successful in
treating diseases in the therapeutic areas of ophthalmology,
neurology, hematology, metabolic and musculoskeletal
disorders (99, 107). This platform can also be used for
delivering biological therapeutics for chronic infectious
diseases, such as HIV, through delivery of small molecule
inhibitors, immunoadhesins, or HIV broadly neutralizing
antibodies. This platform has the benefit of enabling specific
gene-encoded antibodies to be delivered, representing a viable
approach to incorporating Fc-enhancing mutations to improve
innate immune functionality of the delivered protein. In 2002,
Lewis et al. demonstrated the use of a dual promoter rAAV
vector to express full-length b12 in Rag1-/- mice (20). Subsequent
enhancements were made to the viral vector by Fang et al.
improved packaging and cleavage of these antibodies in vivo
using a picornavirus 2A self-processing peptide in order to
express both the heavy and light chains of an antibody from a
single open reading frame (19). A furin cleavage site was also
introduced between the C-terminus of the heavy chain and N-
terminus of the 2A sequence to enable removal of remaining 2A
residues (108). These alterations led to significant improvement
in antibody expression, resulting in concentrations well over
1mg/ml in serum.

Johnson et al. first demonstrated the efficacy of a self-
complementary AAV (scAAV) vector that expressed SIV-
specific immunoadhesins composed of recombinant antibody
fragments (109). They administered one intramuscular injection
of this scAAV1 into rhesus macaques, resulting in serum
expression of the immunoadhesins four weeks after
September 2021 | Volume 12 | Article 734304
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administration. Our lab utilized AAV serotype 8 capsid to
express a full-length HIV bNAb in vivo. Enhancements were
made to the vector, including designing a novel promoter that
combined the CMV enhancer and chicken b-actin promoter
followed by an artificial intron containing the ubiquitin enhancer
region (18). These changes led to significantly improved
antibody expression which enabled this improved vector
system to deliver various HIV bNAbs targeting different viral
epitopes and measured protection against repeated HIV mucosal
challenge in humanized mice (21). This system has also been
used to deliver CAP256-antibodies and CAP228-antibodies in
immunocompetent mice, both of which target the V2 loops and
have been shown to mediate ADCC (110). NHP studies have also
demonstrated expression of a simianized form of VRC07, a
CD4bs-directed bNAb, and anti-SIV neutralizing antibodies,
ITS01 and ITS06.02 (111, 112). As a result of these promising
proof-of-concept animal studies, two separate Phase I clinical
trials were initiated to test VIP in humans.

In one study, AAV was used to deliver PG9, a V1V2-directed
bNAb, chosen for its potent neutralization capacity
(ClinicalTrials.gov: NCT01937455) (113). This clinical trial
looked at the safety and efficacy of PG9 delivery using an
rAAV-1 vector. The PG9 heavy and light chains were codon
optimized to increase expression in the rAAV vector.
Additionally, a 21-amino acid synthetic signal peptide was
included in order to improve secretion into the serum. The
transgene consisted of a dual promoter system to independently
express the variable heavy and variable light chains of the IgG1
antibody. The heavy chain was expressed under a CMV
promoter and the light chain was expressed by the EF1a
promoter (Figure 2). Healthy, non-HIV infected, men aged
18-45 were admin i s t e red rAAV1-PG9DP through
Frontiers in Immunology | www.frontiersin.org 11
intramuscular injection. Results showed that the AAV caused
no harmful side effects to the volunteers, and muscle biopsies
showed detectable PG9 by RT-PCR as well as IgG within muscle
cells and extracellular tissues by immunohistochemistry.
However, PG9 was not detectable in the serum by ELISA,
although it is important to note that the limit of detection in
the assay was 2.5µg/ml. In support of these findings, no HIV
neutralizing activity was detectable in the sera. Importantly, they
observed anti-drug antibody responses in many of the
participants of the study, suggesting that these may have
limited the potential for PG9 expression (113).

Independently, a second on-going clinical trial by the NIH is
testing the safety and efficacy of VRC07 delivery through an
rAAV8 viral vector to HIV-infected adults aged 18-60 (AAV8-
VRC07; ClinicalTrials.gov: NCT03374202). The vector design
used in this study was analogous to those described in previous
papers from our laboratory and include the CASI promoter and
optimized F2A-containing VRC07 transgene (Figure 2). Recent
results from this clinical trial presented at the 2021 Conference
on Retroviruses and Opportunistic Infections meeting showed
detectable expression of VRC07 antibody as high as 1µg/mL in
circulation, with several patients maintaining VRC07
concentrations well over a year after administration. In
contrast to results from the earlier study, VRC07 neutralizing
activity was detected in trial participants, suggesting that
antibodies produced as a result of VIP retained their activity in
vivo. This trial represents the first demonstration of long-lived
systemic production of a broadly neutralizing antibody in
humans, providing strong evidence for the potential of
vectored antibody delivery. Despite this success, some
participants developed anti-drug antibodies against the VRC07
antibody variable regions, leading to loss of antibody expression.
A

B

C

FIGURE 2 | Transgene construct used in clinical trials testing AAV delivery of bNAbs. (A) The dual promotor transgene cassette was used to expressed PG9 in an
rAAV-1 vector. The heavy chain is expressed the CMV promoter while the light chain is expressed by the EF1a promoter. (B) The transgene cassette used to
express VRC07 in an rAAV-8 vector. Both heavy and light chains are expressed through the CASI promotor shown in (C).
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As such, additional improvements to the AAV transgene may be
necessary to enable widespread use of VIP for HIV prevention.
Looking forward, this system could be utilized for delivery of
optimized bNAbs that contain altered Fc-regions with hinge
length changes or even different isotypes to improve FcgR
binding. The use of such optimized transgenes has the
potential to reduce the concentrations of bNAbs necessary to
prevent HIV acquisition.
DISCUSSION

Broadly neutralizing antibodies have been shown to be
promising candidates for HIV prevention, therapy and possibly
cure. Passive administration of bNAbs have demonstrated that
antibody concentration and potency are important parameters
correlated with protection against HIV acquisition. Other non-
neutralizing functions, including ADCC, ADCP and ADCD
have also been shown to be critical in this context. As a result,
there is growing interest in understanding whether there are
optimal viral epitopes that antibodies can target to effectively
elicit protective responses. Early findings from the RV144
vaccine study suggested that non-neutralizing antibodies
targeting the V2 site were implicated in preventing disease
acquisition. However, when bNAbs targeting different sites of
vulnerability were tested for their ability to mediate these same
non-neutralizing functions, results were variable and largely
dependent upon the challenge virus. Further work is needed to
Frontiers in Immunology | www.frontiersin.org 12
understand if there is an optimal site that can facilitate these
functions across a wide range of diverse strains. Additionally,
several in vivo studies measured the contribution of these effector
functions in protection, but questions remain as to contributions
of individual functions, such as ADCC, to mediating protection.
Future work could help to identify which effector functions
contribute most to bNAb-mediated protection, and armed
with this improved understanding, specific Fc mutations or
hinge length modifications could be made to the antibody
to improve therapeutic outcomes. These are especially relevant
in the context of vectored antibody delivery, which represents
a promising approach capable of integrating advances made
in our understanding of antibody-mediated innate immune
function into future clinical products. However, transduction
efficiency is relatively low as compared to pre-clinical models
and there appears to be a significant proportion of recipients
who mount an immune response against the antibody
transgene. Future studies will be needed to improve the
consistency of antibody delivery using this system, including
optimizing the vector to improve antibody concentrations and
minimizing anti-drug antibodies elicited in response to existing
rAAV vectors.
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